Dalam
kalkulus
,
kaidah hasil bagi
adalah cara untuk menemukan
turunan
sebuah
fungsi
yang terdiri dari hasil bagi dua fungsi lain yang eksistensi turunannya sudah diketahui.
Bila fungsi yang ingin didiferensiasikan
f(x)
dapat ditulis sebagai
,
dan
h(x)
≠
0
, maka kaidah hasil bagi menyatakan bahwa turunan
g(x)/h(x)
dapat dihitung sebagai berikut:
Atau lebih tepatnya, untuk semua
x
dalam sebuah
himpunan terbuka
(dalam bilangan riil ini adalah selang terbuka) beranggotakan bilangan
a
, dengan
h(a)
≠
0
, dan
g'(a)
serta
h'(a)
keduanya eksis, maka
f'(a)
juga eksis:
Bukti
Misalkan
dengan
,
g
dan
h
. Dari definisi turunan kita dapat menuliskan:
Dengan menarik keluar
dan menjumlahkan pecahan di pembilang:
Menambahkan suku
pada pembilang dan menyusun ulang memberikan
Memfaktorkan dan mengalikan
di pembilang menghasilkan:
Dari definisi turunan, limit-limit di pembilang adalah turunan. Jadi kita mendapatkan
Artikel bertopik
matematika
ini adalah sebuah
rintisan
. Anda dapat membantu Wikipedia dengan
.